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Throughput  Analysis for Persistent  CSMA  Systems 
HIDEAKI  TAKAGI, MEMBER, IEEE, AND LEONARD  KLEINROCK, FELLOW: IEEE 

Abstract-The  channel  throughput for a finite number of  packet 
broadcasting users is  analyzed  for random  access  protocols,  including 
slotted persistent carrier sense  multiple  access  (CSMA) with and  without 
collision  detection  and  unslotted persistent CSMA with  and  without 
collision  detection.  We  consider  both p-  and 1-persistent CSMA. Our 
results can  be  extended to infinite  population  cases  (by  taking the  proper 
limit), where they  agree  with the known throughput  expressions when 
available. 

0 
I. INTRODUCTION 

NE class of  multiaccess  protocols  for  packet  communica- 
tion systems is the  random access (or  contention)  tech- 

nique,  where  the  entire  bandwidth is provided to  the users  as a 
single  channel to  be  accessed randomly.  Carrier sense  multiple 
access [6] is included  in  this  category.  Here  one of the basic 
measures for  the efficiency  of  protocol is the  throughput, i.e., 
the average fraction of time  that  the  channel is used for useful 
data  communication.  (Three  factors  accounting  for  the  through- 
put degradation  are  propagation  delay,  user's  idle [not trans- 
mitting]  period,  and  packet collision  [overlapping  of  transmis- 
sions from multiple  users]  inherent in the  random access.) 

This  paper  focuses  on the  throughput analysis for CSMA- 
type random  access protocols  for  a  finite  number of users 
(transmitters)  and  a single  receiver in line-of-sight  of all users. 
A  number of studies on  the  throughput analysis for  random 
access protocols have  already  appeared  in the literature. How- 
ever, most of them have  been  based on the  assumption  that 
there are  infinitely  many users, such that  the collective channel 
traffic  forms  a Poisson  process  with a  finite  rate.  Thus,  our 
study gives useful  information  for  ground  packet  radio  systems 
as well as  local  area  computer  networks,  which  consist of a 
relatively  small number of users. (A system  with  a  relatively 
large number of users  can  be approximated  by an  infinite 
population  model.)  The analysis for  finite-population  systems 
may  also  serve  as the first  step to  approach  the  performance 
modeling of multihop  packet  radio  networks  (such as  PRNET 
described  in [ 41 ), where  each  user  has  only  a  limited  number 
of  communicating neighbors. 

The  channel access protocols we consider  here  are 

1) slotted p-  and  I-persistent CSMA 
2)  slotted p -  and  I-persistent CSMA with  collision detec- 

3) unslotted p -  and  I-persistent CSMA 
4) unslotted p -  and  I-persistent CSMA with  collision detec- 

tion 

tion. 

(Each  protocolmodelis described  individually  below.)  Previous 
work  based on  the  infinite  population  model  for  the  subset of 
the above-mentioned  protocols  includes [ 6 ]  (slotted p -  and 
I-persistent CSMA and  unslotted  I-persistent CSMA) and [71 
(slotted  I-persistent CSMA with  collision detection). In  this 
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paper, we  give an exact  throughput analysis  in the case  of a 
finite  population for all of  the above-listed  protocols. Arthurs 
and  Stuck [ 1 ] also  provide  an  analysis of throughput  for  slotted 
and unslotted  persistent CSMA with  collision detection based on 
models  different  from  ours.  (A  difference  between  our  model 
and theirs involves the way  in  which one disposes of a  packet, 
the transmission of which is suppressed  as a result of  packets 
sensing a  busy  channel. In our  model,  similar to [ 6 ] ,  they  are 
dismissed from  the  system  at  the beginning of the  next  trans- 
mission period, while in [ 1 ] they  are  retained  in  the  buffer  un- 
til successfully transmitted; so I-persistent CSMA is impossible 
in the [ 1 I model.) 

In  dealing  with the case of a  finite  population, we assume 
that  each user  has  periods,  which  are independent  and  expo- 
nentially  or  geometrically  (depending on whether  the  time is 
continuous  or  slotted)  distributed, in which he has no packets. 
By superimposing  these idle periods  over all users, the system 
idle period  in  which no users  have a  packet  (denoted  by I )  is 
easily seenalso to  be exponentially or geometrically  distributed. 
This  assumption  makes  analysis'tractable  by  taking  advantage 
of the memoryless  property [ 5, p. 661, The case of an infinite 
population  does  not need a specific assumption on  the distri- 
bution of each  user's  idle  period  because the Palm-Khinchine 
theorem (see [ 3 J ) guarantees that  the collective  idle  period is 
always  independent  and  exponentially  or  geometrically dis- 
tributed. 

Due to  the above assumption, we recognize that each epoch 
in the system idle period is a regenerative point,  in  the sense 
that  the  system  state  after  any  such  epoch is a  probabilistic 
replica of the system  state  beginning  at the previous  such 
epoch.  Thus,  the  system  state  alternates  between  idle  periods 
I and  busy  periods B in  which  at  least one user  has a  packet. 
We call consecutive  pair B and I a regeneration cycle. Let U be 
the  time spent in useful  transmission  during  a  regeneration 
cycle. Then,  the  channel  throughput S is generally  expressed 
as 

B + 1  

vyhere 2 denotes  the  expectation of a  random variable X, i.e., 
X 2 E [ X l .  

Throughout  the  paper we assume  a  constant  packet  length 
whose  transmission  time is chosen as the  unit of time. We de- 
note  by M the  number of  users  and  by G the  total  packet ar- 
rival rate  (in  units of packets  per  packet  transmission  time). 
We take  into  account  the signal  propagation  delay  denoted  by a. 

Each  section  below  begins  with  a  description of the  protocol 
model,  followed  by the  definition of protocol-dependent pa- 
rameters. The condit@n  for % successful  transmission is stated. 
Then, we evaluate I, B, and U for  the  finite  population  model. 
Our  result  in the limit M + 00 is shown to be  in  agreement  with 
the  known  results  for  an  infinite  population. 

11. SLOTTED PERSISTENT CSMA 
In slotted CSMA  we assume the  time is slotted with slot 

size a (the propagation  delay),  and all users  are  synchronized 
to  start transmission  only  at  slot  boundaries. (For convenience, 
we assume  that l / a  is an  integer.) An attempted  transmission 
is successful if none  of  the  other users start  a  transmission  at 
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Fig. 1. Channel state in slotted  persistent CSMA. (a) Overview of channel 
state. (b) Close look at the jth sub(busy)pericd. 

the same  time.  For  the  following  l/a  slot  boundaries, all other 
users  suppress the  start of their  transmission  due to carrier 
sensing. Thus,  the  duration of a  transmission  period  (whether 
successful  or not) is 1 + ( l /a )  slots. We only  consider the case 
of  statistically  identical users. In persistent CSMA [ 6 ] ,  all the 

. packets  that arrive  during any  ongoing  transmission  are  buf- 
fered  until  some  next  transmission is started in the  channel, 
and  then  they  are  discarded  or  rescheduled.  Let  each  empty 
user (who does  not have a  buffered  packet)  have an arrival 
with  probability g (and  does  not  with  probability  1 - g )  in 
any  slot,  where'O < g < 1.  (This we call a  geometric arrival 

, process.)  Assume that each  nonempty user (who has  a  buf- 
fered packet)  starts  transmission  with  probability  p  (and  does 
not with  probability  1 - p )  at  the  slot  boundaries  following 
any idle slot.  (This is a  slotted  p-persistent  protocol,  where 
0 < p =G 1.) Our  derivation of channel  throughput  for  a  finite 
population  model  follows  the  approach  in [ 6 ]  for  an  infinite 
population  model. 

To analyze the  throughput,  let  us  introduce  some  notation 
which  defines  the  channel  states  as  illustrated  in Fig. l(a).  Let 
a  channel idle period  (denoted  by I )  be the  time  in which the 
channel is idle  and no  packets  are  awaiting  transmission. When 
any  packet arrives, the  next  slot is said to  begin a  busy  period 
(denoted  by B )  which  ends if no  packets have accumulated  at 
the  end  of  transmission.  Let U be the  time  spent  for successful 

. . transmission(s)  in  a  busy  period B.  Then, we have the  channel 
throughput  as in (1). 

We divide a  channel  busy  period  into  several,sub(busy)peri- 
ods  such  that  the  jth  subperiod  (denoted  by B ( I ) )  consists of a 
transmission  delay  (denoted  by R ( j ) )  followed  by  a  transmis- 
sion  time  (denoted  by T ( I ) ) ;  see Fig. l(b).  A transmission  de- 
lay is the  time in  which the  channel is idle and  packets, are 
awaiting  transmission; in the 1-persistent  protocol, R ( I )  is 
always  zero  since  packets  start  transmission  as  soon  as  they 
arrive. In CSMA without collision detection, we have T ( I )  = 
1 + a whether  the  transmission is successful or  not.  Thus, we 
have 

~ ( i )  = R ( i )  + 1 + a j = 1,  2, - 1 . .  (2) 

Finally,  let U ( j )  be the useful  transmission  time in the  jth 
subperiod: 

Next,  let J be the  number of sub(busy)periods  included  in  a 

busy  period B.  Then we have 

J J 

Since the busy  period  continues  as  long  as  there is at least one 
arrival during  the last transmission  time  (such  an  event  occurs 
with  probability 1 - (1 - g ) ( l + ( l / u ) ) M ) ,  J is geometrically 
distributed  as 

Prob [ J = j ]  = [1 - ( I  - g ) ( l + ( l / a ) ) M ] j - l  

* (1 - g ) ( l + ( l / a ) ) M  j = 1 , 2 ,  ... 

Note  in (4) that { B ( i ) ;  j = 1,  2, - * ,  J }  are  independent  and 
{ B ( j ) ; ' j  = 2, 3,  ..., J } ,  are  identically  distributed.  Also, J i s  in- 
dependent of each B(I) .  The  same  thing  can  be said for { U ( i ) ] .  
Thus, we have 

It is clear that  the  duration of an idle periodIis geometrically 
distributed  as 

Thus,  from ( l ) ,   (2)  and (5)-(7), we can  calculate S if we know 
E[R( j ) l  and E[UUZI f o r i  = 1,2 .  

Let n n ( X )  be  the  probability  that we have n arrivals among 
M users  in X slots, given that n 2 1. Using the  geometric arrival 
rate g at  each of M users in  a  slot, we have 

n 
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the  distribution  of  the  number of packets  awaiting  transmis-  From  (1 11, the  expected value ofR( j ) ,  given No(') = n, i' 2 1 
sion at  the beginning of dl), denoted  by NO(') ,  is given by is evaluated  as 

T n ( 1 )  i = l  E [ R ( i )   IN^(^) .= n ]  

~ " ( 1  + (l/a)) i = 2,  3, .-. (9) m M - n  

[Note in (9) that N o ( i ) ,  j B 2, is assumed to be  independent of k = l  m=O 
the  number of nonempty users at  the beginning of T u - ' ) ,  
which  may  not  be  true,  depending on when a user  which  has a 
packet  at  the beginning of T(I-  l )  discards it and  can thus ac- = a ,X (1 - P ) ~ "  . (12) 
cept the  next arrival. However, for  simplicity we assume that k = l  
all users  make room  for new arrivals from  the beginning of 
T ( j - 1 )  by  putting aside the already  buffered  packets  (includ-  Unconditioning (12) by Using (8) and (9), we get 
ing the  packets being transmitted  in  T(1-l)) which are to be 

Prob [No( j )  = n]  = 

= a  C Prob [ ~ ( j ) ~ k a , ~ ~ ( j ) = n + m ( ~ ~ ( j ) = n ]  

m 
P(l - gY - - PY 

discarded;  this is the same assumption  as  in  [61  and  leads to  
@).I E[R ( n ]  = 

found  as  follows.  Let us number  the  slot  boundaries  as k = 0, 
1, 2,  from  the beginning  of R ( J ) ,  as depicted  in Fig. l(b), 
and  denote  by & ( I )  the  number of awaiting  packets  at the where 
kth  boundary.  Then,  according  to  the  p-persistent  protocol 
and  geometric arrivals, we  have (Ai(/) being the  number of ar- 
rivals during the  ith  slot  in R ( j ) )  r ( X )  G 

r(1) . i = 1 

The  distribution of R ( j ) ,  given N o ( i )  = n, j > 1, can  be ~ ( 1  + (l/a)) i = 2,  3, ... 

= (1 - p)k"(l - g)k(M--")(M - n)! 

It  follows  that 

empty users). Unconditioning (1  6) on R ( j )  and Nk") by  using 
(1 l ) ,  we have 

E [ u(i) I N~ ( i)  = n] 
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- p)k+l Af-~--l 1 (1 7 )  

Further  unconditioning  (17)  on No( i )  by using (8) and  (9), we 
get 

where 

From  (5), ( 6 ) ,  (181, and (191, we obtain 

(1 - p y + 1  - (1 - g Y + '  
- (1 - g)'+(1 /.).f [ p - g  I JMI 

We note  that, in  1-persistent CSMA (p  = l ) ,  we have  simply 

M(1 - g>x"-1'[1 - (1 - g)X] 

1 - (1 -g)XM 
Y ( X )  0 and u ( X )  = 

(21) 
The limit M +. m, with UC = gM held at  a  fixed value, gives the 
throughput  for  an  infinite  population  model.  In  this case, we 
use the following  expressions  for r ( X )  and u ( X )  (obtained 
from  (14)  and  (19)  by  taking  the  limit): 

(23) 
We further  note  that,  in  the  1-persistent case (p  = l ) ,  we have 

.(X) E 0 and u ( X )  = aCXe-acx/(l - e- -aCX 1. (24) 

Substituting  (15)  and  (20)  into  (l), we get the  channel 
throughput of a  slotted  p-persistent CSMA system  (with  prop- 
agation  delay a )  consisting of M identical users, each  with  geo- 
metric arrival rate g:  

In the limit M +. m with aG = gM held  at a  finite value, (25)  and  (26)  become 
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Fig. 2. Throughput of slotted p-persistent CSMA. 

and 

Ge-('+a)G(1 + Q - e-aG ) 
S =  (28) 

(1 + U)(I - e - a G ) +  a e - ( l + a ) G  

respectively.  Equation  (28) (an infinite  population  model of 
slotted  1-persistent CSMA) is derived in [61, where  only a 
procedure  to  obtain  (27)  (an  infinite  population  model of slot- 
ted  p-persistent CSMA) is also given.  An explicit  expression of 
(27) is now  provided  in  this  paper.  Also  provided are ( 2 5 )  and 
(26) for  finite  population models. 

In Fig. 2, we show the  throughput of slotted  p(=0.03)- 
p'ersistent CSMA for M users in terms of the  total offered  traf- 
fic  rate G = gM/a (Q = 0.01). We let g = min [ 1, & / M I .  A few 
interesting  observations  here  are:  i) the ,maximum  throughput 
values are  not very dependent on M as  long  as M > 5 ;  ii) for  a 
finite M, the  throughput  does  not  degrade  to  zero  as G be- 
comes  large (the case  where the busy  period is very  long but 
steadily  pushes  packets out); iii) the curves we see  by  increas- 
ing M from  1 to  c? resemble  those  for the  throughput-load 
relationship  in  flow-controlled  systems  (see,  for  example, [ 21 ). 
Elaborating on iii) above, we see that  the  maximal  throughput 
of  an  uncontrolled  system (M = m) is higher  than  that of an 
excessively  controlled  system (M = 1). The  throughput  of less 
controlled  systems (large M )  quickly  degrades  with  congestion 
(large C), while that of controlled  systems  does  not.  The 
highest  maximum throughput  and  sustained behavior  in  cases 
of  congestion  are  achieved  in  moderately  controlled  systems 
(around M = 5 here). We note,  however,  that  for p = 1 we 
have only  feature  i)  above;  except  for M = 1 in  this case, the 
throughput  equally  degrades  as G gets  large for  any  number  of 
users. 

111. SLOTTED PERSISTENT CSMA WITH COLLISION 
DETECTION 

We consider  a dotted p-persistent CSMA protocol  with 
collision  detection  and  a  finite  population.  Here the assump- 
tions  and  parameters  are the same  as  in the previous  section 
except  that  the  duration of an  unsuccessful  transmission is 
now given by b + a, where Q < b < 1 .  The  parameter b stands 
for  the  effect of  collision detection (we  assume that b/a  is an 
integer)  such that b/a slots  are  necessary to abort  transmission 
after  detecting  the  collision.  Our  treatment  follows  that of [71 
for  an  infinite  population  model of 1-persistent CSMA. 

The  channel throughputs is still  expressed  as  in (1) where 
is  given by (7).  To  find B and U,  let  us  denote  by B ( X )  the 

mean  duration of the busy  period  following the packet-accum- 
ulation  time of X slots.  Similarly,  we  denote  by U ( X )  the mean 
useful  transmission  time  during the same  busy  period.  Since  a 
busy  period is induced  by  those  packets which  have  arrived  in 
the preceding  slot, we have 

E = B(1); u = U(1). ( 2 9 )  

It  follows,  from (1) and  (7),  that 

where V( 1) and B( 1 )  are  determined  below. 
Since the  duration of a successful  transmission  (1 + ( l / a )  

slots) is different  from  that of an  unsuccessful  transmission 
(1 + (b /a)  slots),  the  distribution of N o ( i ) ,  j > 2  depends on 
whether T ( i - l )  is successful or  not.  From  .the recursive  con- 
sideration  similar to [ 71, we have 

B ( X )  = r ( X )  + (1 + a  + [l  - (1 - g ) ( l + ( l / a ) ) M ]  

* B(1 + (1 /a ) ) )u (X)+  { b  + a  + [l -(1 - g ) ( l + ( b / a ) ) M ]  

U ( X )  = { 1 + [ 1 - (1 - g p  + ( I  / a ) ) M ]  U( 1 + (l/a))}u(X) 

+ [ l  - ( 1  - g ) ( l + ( b / a ) ) M ]  U(l +(b/a))[l - u ( X ) ]  

(32) 
where r ( X )  and u ( X )  are  defined  by (14) and (19), respec- 
tively. We may  use (21)-(24) in  the special  cases stated  there 
withobviouslimitingforms in the coefficients  in  (31)  and  (32). 
Writing (31)  for X = 1 + ( l /a )  and X = 1 + (b/a) ,  we obtain 
two  equations  in  the  two  unknowns, B( 1  (I/Q))  and B(1 -k 
(b/a)) .  Solving for  them,  and using them  in  (31), we can  calcu- 
late  B(1).  Similarly, U(1) is obtained'  from  (32).  Thus, S is 
found  by (30). We note  that, in the 1-persistent  case ( p  = l ) ,  
we have (24), which  reduces  (31)  and  (32) to  the same  form  as 
in V I .  

Figs. 3  and  4  display the  throughput values of slotted  p-per- 
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Fig. 3. Throughput of slotted  p-persistent CSMA with collision detection. 
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Fig. 4. Throughput of slotted  0.03-persistent CSMA with collision  detec- 

tion. 

sistent CSMA with  collision  detection  in  terms of the  total  of- 
fered  traffic value G = gM/a (a = 0.01). In Fig. 3, we again ob- 
serve little  dependence of the maximum  throughput  on  the 
number of users. Also, in  1-persistent CSMA, the  throughput 
degrades  rapidly  as G exceeds  some  critical value.  Fig. 4 de- 
monstrates  the  throughput values for  different values of the 
collision  detection  parameter b, in  the case of M =. 100 users 
for  0.03-persistent CSMA. A  good collision detection (small b )  
is seen to  contribute  to sustaining  throughput when G is large. 

IV. UNSLOTTED PERSISTENT CSMA 
We now  proceed to  study  unslotted  persistent CSMA. Here 

the  unit of time is still the  constant packet  transmission  time, 
and a denotes  the signal propagation  delay  (in  that  time  unit) 
so that all users  recognize  what happened  in  the  system a time 
units  before. Let M be  the  number of users  (we  consider only 
the case of identical  users),  and let the  time  until  a  packet  ar- 
rives at  each of the  empty users  be independent  and  expo- 
nentially  distributed  with  mean l / g .  If a  packet arrives at  a 

user  when the  channel is sensed idle, he schedules  start  of 
transmission  a  random  amount of time  later. We assume that 
this  random  time  is'exponentially  distributed  with  mean  l/p, 
where 0 < p < 00. In  time a after  any  transmission  has  started, 
it is recognized by all users, who  then discard  old packets (if 
any) and  make  room  for new arrivals. If a packet arrives  at a 
user  when the  channel is sensed busy,  the  start of transmission 
is also  scheduled  at  an  exponentially  distributed  time  (with 
mean l /p)  after  the  end of the transmission  period.  An  at- 
tempted  transmission is successful if it is started  by  breaking 
the idle  channel,  aqd if no  other transmissions  take  place  within 
a  time a after  the  start. We call this  protocol  unslotted  p-per- 
sistent CSMA. (The case p = 00 corresponds to 1-persistent 
CSMA and is treated  separately  in  Section V below.  Note  that 
the meaning of parameters g and p in  unslotted CSMA is dif- 
ferent  from  that  in  slotted CSMA.) 

The  channel  throughput af this  system  can  be  analyzed 
similarly to  slotted  persistent CSMA. Referring to Fig.  5(a),  let 
B and I be  the  durations of  system  busy  and idle periods,  respec- 
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Y1-I  k b - 4  
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TIME 
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Fig. 5. Channel  state  in  unslotted  persistent CSMA. (a) Unslotted  persistent 
CSMA. (b) Unslotted persistent  CSMA  with collision detection. 

tively,  as  before;  tliat is, the idle  period is defined  as the  time 
in which the channel is idle  and  no  packets  are  awaiting  trans- 
mission.  Upon the arrival of a  packet,  the  system  enters  the 
busy  period, which terminates  at  the  end of a  transmission 
period in which no  packets have  arrived. If U is the  number 
of successful  transmissions  achieved  in  a  busy  period,  then,  by 
the renewal  argument,  (1) again gives the channel  throughput. 

A  channel  busy  period is divided into  a  number of succes- 
sive sub(busy)periods,  each  consisting of a  transmission  delay 
(denoted  by R )  followed  by  a  transmission  time (of duration 
1 + a 4- Y ,  where Y is  defined  shortly).  The  transmission  de- 
lay is the  time during  which the channel is idle but with  some 
packets  awaiting  transmission.  If  a  transmission is successful, 
its  duration is 1 + a ( Y  = 0) ;  the  duration of an  unsuccessful 
transmission  period is 1 + a + Y ,  where Y is the transmission 
start  time of t h e  last colliding packet.  Note  that  the  jth  sub- 
period, j > 2, is generated  by the  packets which  arrive  during 
1 + Y in the ( j  - 1)st  subperiod, whereas the first  subperiod 
is always  generated  by one  packet.  Let B ,  be  the  mean  dura- 
tion of the busy  period  initiated by n packets,  and  let Un be 
the mean  number of successful  transmissions in the same  busy 
period.  Then,  clearly, 

(34) 

In  the remainder of this  section, we  derive a  system of linear 
equations  for { B , ;  n = 1, 2, -., M }  and { U,;  n = 1, 2 ,  - e ,  M } .  

Let us focus  our  attention  on  a  sub(busy)period which  be- 
gins  with n packets.  Taking the origin of the  time  at  the  start 
of this  subperiod,  let N ( x )  be  the  number of packets  present 
in the system  (i.e., the  number of nonempty users) at  time x .  
We first  consider the  distribution of R on  the  condition  that 
N ( 0 )  = n.  Note  that,  during  the  transmission delay R ,  each 
user  behaves independently of others. Each of n busy  users 
schedules  his  transmission  after  time x with  probability 
e - p x .  Consider the event { R  > x ,   N ( x )  = n + rn IN(0) = n}. 
For  this even to  occur,  each of M - n - m users  does not 
have an arrival before x with  probability e - g x .  For each  of 
rn users, the  time  until arrival plus  start of transmission is 
less than x ,  with  probability 

Thus, we have 

Prob [ R > x , N ( x ) = n + m l N ( O ) = n ]  

x 2 0  m = O , l , 2 ; - , M - n .  (36) 

Adding (36 )  over all rn, the  number  of arrivals during R ,  we 
have 

x 2 0  (37) 

SO that  the  mean  transmission  delay  conditioned  on N(O) = n 
is  given by 

E [ R ( , ) ]   g E [ R  IN(0) = n ]  = 

We next  consider the behavior  of M - 1 users in the trans- 
mission  period  following the transmission  delay so that R = x 
and N ( x )  = n + m. (Since g ,  p < M, one  event,  at  most,  hap- 
pens  at  a  time; ofie user  begins the transmission  period.) On 
this  condition,  the event { Y < y }  occurs  in the following cases. 
Again note  that,  during  the  first e time  units,  each User behaves 
independently. Each of n + rn - 1 nonempty users either  does 
not  start  transmission  befote e, with  probability e - p a ,  or 
starts  transmission  before y with  probability  1 - e-PY. There 
are  three cases  of  behavior for  each of the M - ,n - rn users 
who were empty  at  the end of R :  i)  no artival  during e, with 
probability e - @ ;  ii) arrival before a ,  but  transmission  after 
e, with  probability g(e-ga - e - P a ) / ( p  - g )  [similar to  (391; 
and  iii) arrival and  transmission  before y ,  with  probability 

( 3 9 )  

Therefore, we  have 

Prob [ Y G y I R   = x , N ( x ) = n + r n , N ( O ) = n ]  

'0 P - g  



Note  that 

Prob [ Y = 0 I R = x, N ( x )  = n + m, N(0) = n] 

= e - p a ( n + m - l )  (41) 

is the  probability of a successful  transmission.  Unconditioning 
(40)  on N(R)  and R ,  using (36)  and  (37) SUCCeSSiVelY, gives 

f ( y ; n ) e P r o b  [ Y < y I N ( O ) = n ]  

and  similar unconditioning of (4  1) yields 

pe-ga - ge-pa M - n  
Y(,) A =f(o; n)  = e-pa(n-l)  ( P - g  ) 

La 

n = 1,  2, ..., M .  (43 1 

Note  that Y(,) is the  probability of  success in  the  subperiod 
begun  with n packets. The mean  of Y in the similar  subperiod 
is given by 

E [ Y ( , ) ]   A E [ Y I N ( O ) = n ]  = a -  f(u;n)d.Y 

n = 1,  2, ...) M .  (44) 

Finally, we consider the  condition  that we have k accumu- 
lated  packets  at  the  end of the transmission  period. If the 
duration  of  the  transmission  period is 1 + a + y ,  those  packets 
which  arrive during 1 + y are  buffered. So, the  probability of 
having k packets  in  the  transmission  period of duration  1 + 
a + y  is  given by gk( 1 + y), where 

(45 1 

where f(y; n )  is given  by (42). (We have  assumed here  that 
gk (1 + y )  is independent of n, the  number  of  nonempty users 
at  the beginning of the transmission  period.  This is based on 
the  same  assumption  as  that  stated  after  (9).) 

Now  we  are in  a  position to write downa system  of  equa- 
tions  for {B,} and {U,}. By renewal  considerations,  they  are 
given by 

M 

Bn =E[R( , ) ]  + 1 + a + E [ Y ( n ) ]  + BkPnk 
k = l  

n = 1, 2,  ...) M (47 1 

and 
M 

k = l  

where E[R(n) l ,   E[Y(n) . I ,  Y(n),andP,k  are given by (38), (44), 
(43), and (46), respectlvely.  Thus, all we have to   do  to  com- 
pute  the  throughput is t o  substitute  the  solutions of Bl  and 
U1 to  (47) and  (48)  into  (34). 

In Fig. 6 ,  we plot  the  throughput  of  unslotted  p-persistent 
CSMA for a = 0.01 and M = 10  in  terms of the  total offered 
traffic  rate G = gM. (Note  that  here  the scale of G is differen! 
from Figs. 2-4  and  7.)  For small p,  a  long  transmission  delay 
R suppresses the  start of actual  transmission too much  for 
small G, thus causing a  reduced  throughput. When p is in- 
creased, so is the probability of collision. The  maximum 
throughput is achieved on  the balance of idle period,  transmis- 
sion  delay,  and  probability of collision.  The smaller p  is, the 
larger the  optimal G is. 

V. UNSLOTTED  P PERSISTENT CSMA 
In  the case of 1-persistent CSMA (p  = m), all the  packets 

accumulated  by the end of a  transmission  period  are  started 
immediately  at  the beginning of the  next  subperiod.  There- 
fore,  the  duration of transmission  delay R is always  zero,  and 
the  fact used  in  Section IV that each  transmission  period is 
initiated  by  one user is not valid. However, a similar  analysis 
is possible,  and the  channel  throughput can  still  be  calculated 
by using the  solutions  to  (47)  and  (48),  where  the  following 
replacement is made: 

(6,,1 = 1 if n = 1,  and = 0 otherwise) 

In the limit M + 03 with G = gM held at  a  finite  value, 
E [  Y( , )]  and  Pnk become  independent of n as 

[(l + a ) k + l  - 11 +- 
( k  + l)! k !  

Thus, we have 

Then we recover the result  in [ 6 ]  for  an  infinite  population 
model: 

The values of S in (55) when a = 0.01 are  plotted  in Fig. 6 
with  a  label  p = 00. 
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Fig. 6. Throughput of unslotted  p-persistent CSMA, 

VI. UNSLOTTED PERSISTENT CSMA WITH COLLISON where  is given by  (43),  and 
DETECTION 

CSMA with collision detection can be  treated similarly. f l ( Y ;  n )  h o b  [y1 > Y IN(0) n ]  
Let the collision detection in an  unslotted  system  be  such 
that  the  duration of an unsuccessful  transmission b + a + Y ,  , 

where Y l  is the transmission  start  time of the first colliding ( p e - g :  ~ - P Y  packet.  (Unlike CSMA without collision detection,  note  here 
that  it is the  first colliding packet  that  stops  the  transmission  Note also Y ( n )  = f l  (e;  n). 
of  the leading  Packet, which lingers till  the last moment.)  The  probability  that a  successful  subperiod  begun  with n 
Note  that all but  the user who  initiates a  transmission  period  nonempty ends up with k nonempty is obvious~y 
(called  a  leading  user) know  the transmission  start  at  time a. given by 
So, they can  stop  transmissions at time Q + b (if started). 
However,  a  leading  user knows  the transmission  start by  the 
first  colliding  user at  time Y ,  and  stops  transmission  at  time 
Y l  + a + b. The  distribution  of  transmission  delayR  and  the 
probability  of  success  in  a  subperiod, given that N(0)  = n ,  are  where g k ( y )  is defined  in  (45).  In  the case of  an unsuccessful 
the same  as  before;  they  are given by (36)-(38)  and  (43), re-  transmission,  since the  packets  are  accumulated over the dura- 
spectively. An illustration  of  channel  state is given in Fig. 5(b).  tion b + Y 1 ,  the corresponding  probability  is given by 

Let us find the probability  of the event { Y ,  > y }  condi- 
tioned  on  the event { R  = x, N ( x )  = n + m,  N(0) = n} and  that 
the transmission is unsuccessful.  This  event  occurs when  each P n k  
of n + m - 1  nonempty users does  not  start  transmission  be-  1 - Y ( n )  
fore y ,  with  probability e-PJ’(n + m - l ) ,  and  when  the  time of 
transmission  start following an arrival at  each of M - n - m We are  now able to  write  a  system  of  equations  for {Bn} .  
empty users is after y ,  with  probability ( p e r g y  - ge-PJ’)/ By renewal  consideration,  as  in  Section 111, we have 
( p  - g )  [calculated  similarly to (39)l. Since each user  behaves 
independently  during 0 < y <a,  we have 

= e - P Y ( n - 1 )  ( 5 8 )  

Pgi = gk( 1) (59) 

( e )  - -’ [ a g k ( b + y ) d y f l ( y ; n ) .  (60) 

- 

Prob [ Y ,  > y  I collision, R =x, N ( x )  = n + m,  N(0) = n ]  

e - p J ’ ( n + m  - 1 )  - e - p a ( n + m - l )  

-- - ( 5  6) 

1 - e - P a ( n + m - 1 )  

Unconditioning (56)  onR  andN(R)  [by using (36)l  and  taking - 

the average, we get 

E [ Y , ( , ) ]  A E [ Y ,  I collision, N(O) = n ]  
l a  
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Fig. 7 .  Throughput of unslotted  persistent CSMA with collision detection. 

J 
Thus,  by solving ( 6 2 )  for {B,} and (64) for { U n ) ,  we can  find 
B1 and  U1, which  are to  be used in (34) to  compute S. 

CSMA with collision detection  for  some  combinations of p 
and b in  the case of a = 0.01 and  M = 10. Here the  throughput 
values appear  to  depend  little  on b ,  particularly for large  values 
of p ,  unless  b is close to  a. The  reason  for  this is  ex_plained be- u1 = (1 + E) e-''. (71) 
low  by using the explicit  expressions for B and U for  an  in- 
finite  population  model of 1-persistent CSMA. 

In unslotted  1-persistent CSMA with collision detection,  Substituting  these expressions,  as  well  as  gM = G ,  into (34), 
- we obtain 

Fig.  7  shows the  throughput of unslotted  p-persistent B 1 -  -- eCaG + ( I  - e - u G )  [ (70) 
Po 

- Fig. 8 plots S in  (72)  in  the case  of a = 0.01. As in Fig. 7 ,  S 
the system of equations  for {B,} and { U n }  is given by  depends  little  on b unless b is small. This  comes  from  the fol- 

lowing  behavior of Bl  and U1 as G changes.  When G is small, 
we are likely to  have  successful  transmissions, so that  the ef- 
fects of collision detection  are  nominal. When G gets  large 

(65) and the collision  detection  becomes  effective,  the  increase in 
the  number of subperiods  in  a busy  period  (as ebc in l/po) 
outweighs  the decrease in the  duration of each  subperiod 

B~ = e-ga(M-n) + [1 - e - g a ( M - n )  1 

1 M 

] + 
g ( M -  k = l  

PnkBk 
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Fig. 8. Throughput of unslotted  I-persistent  CSMA  with collision detection. 

(linear  in b). As a  result, the  duration of the whole  busy  period 
grows  rapidly  (as b e b c ) ,  while the  growth  in  the  number of 
successful  transmissions  in  a  busy  period levels off and  then 
decreases due  to increased collisions. Thus, the collision detec- 
tion  feature  seems  ineffective in these cases. 

On the  other  hand, if b is very  small, the  double  peaks  in 
Fig. 8 are  striking. As G increases, the first peak  (near G = 1) 
corresponds to  the point of balance  between the  durations of 
the idle period  and the busy  period  which is most  likely to  
contain  one  transmission  period  which is successful. The sec- 
ond  peak  (whose  position  and  height  depend  on b )  corre- 
sponds to  the  point of maximum  number of  successful  trans- 
missions  per unit  length of a  busy  period (the idle  period  has 
little  effect  here  because of large G). The  smaller b is, the 
faster  the unsuccessful  transmission  periods are  ended. This is 
why a smaller b brings about  a larger throughput  for  a given 
value of G in  this region. Furthermore,  the  optimal G which 
maximizes the  throughput (in  this  region) is larger for smaller 
values of b ,  since more  transmissions  can  then  be  started  for 
the same  duration of the busy  period. 

VII. CONCLUSION 
In  this  paper, we have given a  unified  throughput analysis 

for  slotted  and  unslotted  persistent CSMA with  and  without 
collision detection.  Due to the  assumption of exponentially  or 
geometrically  distributed idle periods, the intervals  between 
two successive epochs  at which the system  enters the idle 
period  are  independent  and  identically  distributed.  Therefore, 
the system  state  can  be  modeled  as  a  regenerative  process. 
Through  renewal  arguments, we have  calculated the channel 
throughput  for  various  persistent CSMA systems. We have ob- 
tained  several  new  results [(25)-(27);  (31)  and  (32)  with  (14), 
(19),  and  (21)-(23);  (47)  and  (48);  (62)  and  (64);  (65)  and 
(66); and  (72)]  and  consistently rederived some  known re- 
sults  [(28);  (31)  and  (32)  with  (24);  and  (55)l. 

Two  major  assumptions we have adopted  in  this  paper  are 
i) the  times  until  next arrival at  each  empty user  are independ- 
ent  and  identically  (exponentially or geometrically)  distribu- 
ted; and ii) the  number of packets  accumulated  at  the  end of 
a  transmission  period is simply the  number of arrivals during 
that  transmission  period, in disregard of the  packets which 
were  already  buffered at the beginning of the transmission 
period  (they  are  discarded).  Assumption  i) is essential in making 
analysis  tractable,  in  virtue of the memoryless  property. As- 

sumption ii) was  used to  be  consistent  with the previous  treat- 
ment in [6]  (in  fact,  in  (28), we have  derived one  of  the prev- 
ious  results  as  a special case). One  of the advantages drawn 
from  this  assumption is that, in the analysis of  slotted  persistent 
CSMA (Section 11), the  subperiods B ( j ) ,  j 2 2, are  statistically 
independent and  identical,  and  this  fact  brings  about the 
closed-form  expression for  throughput as  (25).  Instead of ii) 
above, we could  have  assumed that all the accumulated  pack- 
ets  are  kept  in  the  buffer  until  they  are successfully transmit- 
ted.  Then,  the  number of packets  accumulated  during a trans- 
mission  period  would  depend on the  number of packets 
buffered  at the beginning  of the transmission  period. We note 
that  the  throughput  analysis of (slotted  and  unslotted) CSMA, 
based on  the  latter  .assumption, is still possible;  only  then 
would  we  have a  system  of  linear  equations for ( B , )  and { U n )  
(see  Section IV for  their  definition) like (47)  and  (48).  Thus, 
assumption ii) is not  essential  for  the  tractability  of analysis. 

Since the major  purpose of the  present  paper is to  provide 
the explicit  formula  for  throughput  evaluation  for various finite 
population  models, we  have not  gone  into  the  area of optimi- 
zation  (with respect to  G and p )  or  the  comparison of opti- 
mized throughput values  (capacities)  among  protocols.  These 
s-ubjects, as well as  possible  ramification of models [e.g., the 
above-mentioned  alternative  assumption to  ii)] , remain to be 
elaborated. 
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